Skip to main content
Log in

A chemiluminescence probe enhanced by cobalt and nitrogen-doped carbon dots for the determination of a nitrosative stress biomarker

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A chemiluminometric method is introduced for the determination of the stress biomarker, 3-nitrotyrosine (3-NT) based on the H2O2–NaIO4 reaction enhanced by cobalt and nitrogen-doped carbon dots (Co,N-CDs). In this chemiluminescence (CL) system, the emission proved to be originated from the excited-state Co,N-CDs (λmax = 504 nm). Comparing the effect of Co,N-CDs with that of some other metal ion-doped CDs and undoped CDs indicated the high efficiency of Co,N-CDs in the CL amplification (about 1980-fold). This was attributed to the fact that Co,N-CDs, in addition to other functions, could act as catalytic center, to accelerate the decomposition of H2O2 and to increase the number of hydroxyl radicals. It was found that 3-NT inhibits the action of Co,N-CDs by an electron transfer process, leading to a decline in the CL intensity of the system. Therefore, a new CL sensing platform was introduced for the assay of 3-NT in the range 5.0 to 300 nM with a detection limit of 1.5 nM. The probe was utilized for the analysis of biological samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He Q, Chen Y, Shen D, Cui X, Zhang C, Yang H, Zhong W, Eremin S, Fang Y, Zhao S (2019) Development of a surface plasmon resonance immunosensor and ELISA for 3-nitrotyrosine in human urine. Talanta 195:655–661. https://doi.org/10.1016/j.talanta.2018.11.110

    Article  CAS  PubMed  Google Scholar 

  2. Kim Y, Lee J (2020) Advanced molecular recognition of 3-nitro-L-tyrosine: the use of zwitterion embedded molecularly imprinted mesoporous organosilica with sub-nanomolar sensitivity. Biosens Bioelectron 160:112216. https://doi.org/10.1016/j.bios.2020.112216

    Article  CAS  PubMed  Google Scholar 

  3. Bandookwala M, Sengupta P (2020) 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 130:1047–1062. https://doi.org/10.1080/00207454.2020.1713776

    Article  CAS  PubMed  Google Scholar 

  4. Jalili R, Amjadi M (2018) Bio-inspired molecularly imprinted polymer–green emitting carbon dot composite for selective and sensitive detection of 3-nitrotyrosine as a biomarker. Sensors Actuators B Chem 255:1072–1078. https://doi.org/10.1016/j.snb.2017.08.145

    Article  CAS  Google Scholar 

  5. Bandookwala M, Thakkar D, Sengupta P (2020) Advancements in the analytical quantification of nitroxidative stress biomarker 3-nitrotyrosine in biological matrices. Crit Rev Anal Chem 50:265–289. https://doi.org/10.1080/10408347.2019.1623010

    Article  CAS  PubMed  Google Scholar 

  6. Teixeira D, Prudêncio C, Vieira M (2017) Development of a new HPLC-based method for 3-nitrotyrosine quantification in different biological matrices. J Chromatogr B 1046:48–57. https://doi.org/10.1016/j.jchromb.2017.01.035

    Article  CAS  Google Scholar 

  7. Schwedhelm E, Tsikas D, Gutzki F-M, Frölich JC (1999) Gas chromatographic–tandem mass spectrometric quantification of free 3-nitrotyrosine in human plasma at the basal state. Anal Biochem 276:195–203. https://doi.org/10.1006/abio.1999.4361

    Article  CAS  PubMed  Google Scholar 

  8. Wayenberg J-L, Ransy V, Vermeylen D, Damis E, Bottari S (2009) Nitrated plasma albumin as a marker of nitrative stress and neonatal encephalopathy in perinatal asphyxia. Free Radic Biol Med 47:975–982. https://doi.org/10.1016/j.freeradbiomed.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  9. Govindasamy M, Manavalan S, Chen S-M, Umamaheswari R, Chen T-W (2018) Determination of oxidative stress biomarker 3-nitro-l-tyrosine using CdWO4 nanodots decorated reduced graphene oxide. Sensors Actuators B Chem 272:274–281. https://doi.org/10.1016/j.snb.2018.05.138

    Article  CAS  Google Scholar 

  10. Tiwari A, Dhoble SJ (2018) Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 180:1–11. https://doi.org/10.1016/j.talanta.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Zheng Y-Z, Zhang D-K, Li H-F, Ma Y, Lin J-M (2017) Enhanced chemiluminescence from reactions between CdTe/CdS/ZnS quantum dots and periodate. Chin Chem Lett 28:184–188. https://doi.org/10.1016/j.cclet.2016.07.020

    Article  CAS  Google Scholar 

  12. Liu J, Chen H, Lin L, Lu C, Lin J (2010) Sensitized chemiluminescence reaction between hydrogen peroxide and periodate of different types of Mn-doped ZnS quantum dots. Chin Sci Bull 55:3479–3484. https://doi.org/10.1007/s11434-010-4059-6

    Article  CAS  Google Scholar 

  13. Yan Y, Wang X, Hai X, Song W, Ding C, Cao J, Bi S (2020) Chemiluminescence resonance energy transfer: from mechanisms to analytical applications. TrAC Trends Anal Chem 123:115755. https://doi.org/10.1016/j.trac.2019.115755

    Article  CAS  Google Scholar 

  14. Zhang L, He N, Lu C (2015) Aggregation-induced emission: A simple strategy to improve chemiluminescence resonance energy transfer. Anal Chem 87:1351–1357. https://doi.org/10.1021/ac5041605

    Article  CAS  PubMed  Google Scholar 

  15. Chen W-H, Vázquez-González M, Kozell A, Cecconella A, Willner I (2018) Cu2+ -modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 14:1703149. https://doi.org/10.1002/smll.201703149

    Article  CAS  Google Scholar 

  16. Shah SNA, Zheng Y, Li H, Lin J-M (2016) Chemiluminescence character of ZnS quantum dots with bisulphite-hydrogen peroxide system in acidic medium. J Phys Chem C 120:9308–9316. https://doi.org/10.1021/acs.jpcc.6b01925

    Article  CAS  Google Scholar 

  17. Shah SNA, Li H, Lin J-M (2016) Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid. Talanta 153:23–30. https://doi.org/10.1016/j.talanta.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  18. Wang DM, Lin KL, Huang CZ (2019) Carbon dots-involved chemiluminescence: recent advances and developments. Luminescence 34:4–22. https://doi.org/10.1002/bio.3570

    Article  PubMed  Google Scholar 

  19. Lin L, Luo Y, Tsai P, Wang J, Chen X (2018) Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications. TrAC Trends Anal Chem 103:87–101. https://doi.org/10.1016/j.trac.2018.03.015

    Article  CAS  Google Scholar 

  20. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6:6797–6805. https://doi.org/10.1021/am500403n

    Article  CAS  PubMed  Google Scholar 

  21. Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C (2017) An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta 968:85–96. https://doi.org/10.1016/j.aca.2017.02.038

    Article  CAS  PubMed  Google Scholar 

  22. Zhong J, Chen X, Zhang M, Xiao C, Cai L, Ali Khan W, Yu K, Cui L, He L (2020) Blood compatible heteratom-doped carbon dots for bio-imaging of human umbilical vein endothelial cells. Chin Chem Lett 31:769–773. https://doi.org/10.1016/j.cclet.2020.01.007

    Article  CAS  Google Scholar 

  23. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad T-S, Zhao P, Yu Z, Li N (2016) Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4:7204–7219. https://doi.org/10.1039/C6TB02131J

    Article  CAS  PubMed  Google Scholar 

  24. Das P, Ganguly S, Bose M, Mondal S, Choudhary S, Gangopadhyay S, Das A-M Banerjee S, Das C (2018) Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater Sci Eng C 88:115–129. https://doi.org/10.1016/j.msec.2018.03.010

    Article  CAS  Google Scholar 

  25. Delnavaz E, Amjadi M (2020) An ultrasensitive chemiluminescence assay for 4-nitrophenol by using luminol–NaIO4 reaction catalyzed by copper, nitrogen co-doped carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 241:118608. https://doi.org/10.1016/j.saa.2020.118608

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H-Y, Wang Y, Xiao S, Wang H, J-h W, Feng L (2017) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52. https://doi.org/10.1016/j.bios.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Liu G, Li B, Liu Y, Feng Y, Jia D, Zhou Y (2019) Rapid and high yield synthesis of carbon dots with chelating ability derived from acrylamide/chitosan for selective detection of ferrous ions. Appl Surf Sci 487:1167–1175. https://doi.org/10.1016/j.apsusc.2019.05.069

    Article  CAS  Google Scholar 

  28. Huang S, Yang E, Yao J, Chu X, LIu Y, Zhang Y, Xiao Q (2019) Nitrogen, cobalt co-doped fluorescent magnetic carbon dots as ratiometric fluorescent probes for cholesterol and uric acid in human blood serum. ACS Omega 4:9333–9342. https://doi.org/10.1021/acsomega.9b00874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng Y, Zhang D, Shah SNA, Li H, Lin J-m (2017) Ultra-weak chemiluminescence enhanced by facilely synthesized nitrogen-rich quantum dots through chemiluminescence resonance energy transfer and electron hole injection. Chem Commun 53:5657–5660. https://doi.org/10.1039/C7CC02041D

    Article  CAS  Google Scholar 

  30. Dou X, Lin Z, Chen H, Zheng Y, Lu C, Lin J-M (2013) Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem Commun 49:5871–5873. https://doi.org/10.1039/c3cc41145a

    Article  CAS  Google Scholar 

  31. Chen H, Li H, Lin J-M (2012) Determination of ammonia in water based on chemiluminescence resonance energy transfer between peroxymonocarbonate and branched NaYF 4 :Yb 3+ /Er 3+ nanoparticles. Anal Chem 84:8871–8879. https://doi.org/10.1021/ac302300z

    Article  CAS  PubMed  Google Scholar 

  32. Lin Z, Xue W, Chen H, Lin J-M (2011) Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83:8245–8251. https://doi.org/10.1021/ac202039h

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Wu Y, Li H (2000) Chemiluminescence of cobalt (II)–hydrogen peroxide–hydrogencarbonate in the absence of luminescent reagents. Talanta 53:609–616. https://doi.org/10.1016/S0039-9140(00)00549-X

    Article  CAS  PubMed  Google Scholar 

  34. Tsikas D (2012) Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 42:45–63. https://doi.org/10.1007/s00726-010-0604-5

    Article  CAS  PubMed  Google Scholar 

  35. Ng SP, Qiu G, Ding N, Lu X, Wu C-ML (2017) Label-free detection of 3-nitro-l-tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor. Biosens Bioelectron 89:468–476. https://doi.org/10.1016/j.bios.2016.04.017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amjadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delnavaz, E., Amjadi, M. A chemiluminescence probe enhanced by cobalt and nitrogen-doped carbon dots for the determination of a nitrosative stress biomarker. Microchim Acta 188, 278 (2021). https://doi.org/10.1007/s00604-021-04932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04932-9

Keywords

Navigation